Fusion-pore expansion during syncytium formation is restricted by an actin network.
نویسندگان
چکیده
Cell-cell fusion in animal development and in pathophysiology involves expansion of nascent fusion pores formed by protein fusogens to yield an open lumen of cell-size diameter. Here we explored the enlargement of micron-scale pores in syncytium formation, which was initiated by a well-characterized fusogen baculovirus gp64. Radial expansion of a single or, more often, of multiple fusion pores proceeds without loss of membrane material in the tight contact zone. Pore growth requires cell metabolism and is accompanied by a local disassembly of the actin cortex under the pores. Effects of actin-modifying agents indicate that the actin cortex slows down pore expansion. We propose that the growth of the strongly bent fusion-pore rim is restricted by a dynamic resistance of the actin network and driven by membrane-bending proteins that are involved in the generation of highly curved intracellular membrane compartments.
منابع مشابه
Lysophosphatidylcholine reversibly arrests pore expansion during syncytium formation mediated by diverse viral fusogens.
Using lysophosphatidylcholine, a curvature-inducing lysolipid, we have isolated a reversible, "stalled pore" phenotype during syncytium formation induced by the p14 fusion-associated small transmembrane (FAST) protein and influenza virus hemagglutinin (HA) fusogens. This is the first evidence that lateral propagation of stable fusion pores leading to syncytiogenesis mediated by diverse viral fu...
متن کاملIntracellular curvature-generating proteins in cell-to-cell fusion
Cell-to-cell fusion plays an important role in normal physiology and in different pathological conditions. Early fusion stages mediated by specialized proteins and yielding fusion pores are followed by a pore expansion stage that is dependent on cell metabolism and yet unidentified machinery. Because of a similarity of membrane bending in the fusion pore rim and in highly curved intracellular m...
متن کاملMultifaceted sequence-dependent and -independent roles for reovirus FAST protein cytoplasmic tails in fusion pore formation and syncytiogenesis.
Fusogenic reoviruses utilize the FAST proteins, a novel family of nonstructural viral membrane fusion proteins, to induce cell-cell fusion and syncytium formation. Unlike the paradigmatic enveloped virus fusion proteins, the FAST proteins position the majority of their mass within and internal to the membrane in which they reside, resulting in extended C-terminal cytoplasmic tails (CTs). Using ...
متن کاملSrc Kinases Regulate De Novo Actin Polymerization during Exocytosis in Neuroendocrine Chromaffin Cells
The cortical actin network is dynamically rearranged during secretory processes. Nevertheless, it is unclear how de novo actin polymerization and the disruption of the preexisting actin network control transmitter release. Here we show that in bovine adrenal chromaffin cells, both formation of new actin filaments and disruption of the preexisting cortical actin network are induced by Ca2+ conce...
متن کاملActin cytoskeletal reorganizations and coreceptor-mediated activation of rac during human immunodeficiency virus-induced cell fusion.
The membrane fusion events which initiate human immunodeficiency virus type 1 (HIV-1) infection and promote cytopathic syncytium formation in infected cells commence with the binding of the HIV envelope glycoprotein (Env) to CD4 and an appropriate coreceptor. Here, we show that HIV Env-coreceptor interactions activate Rac-1 GTPase and stimulate the actin filament network reorganizations that ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 121 Pt 21 شماره
صفحات -
تاریخ انتشار 2008